
CS 49/149: 21st Century Algorithms (Fall 2018): Problems

I will be posting 2-3 problems every week (so I presume there will be around 20 problems in all). You
have to submit answers to 10 problems out of these. There will be 3 dates on Canvas where you will be
submitting 3,4, and 3 answers respectively. You are of course free and indeed encouraged to try all these
problems. Please submit those problems which you think you have solved it to your satisfaction, and give
clear and concise answers.

Problem 1. KK
In the experts problem, prove that no deterministic algorithm can do better than a 2-factor in the number

of mistakes than the best expert. That is, for any deterministic algorithm A, any parameter δ and any T ,
there is a setting of the experts problem such that the best expert makes ≤ δT mistakes, while A makes
≥ 2δT mistakes.

Problem 2. KK
Suppose we changed the MWU algorithm as follows: after observing the losses `i(t) at time t, instead

of updating the weights as wi(t+ 1) = wi(t) · (1− η`i(t)) suppose you updated as

wi(t+ 1) = wi(t) · e−η`i(t)

Analyze this algorithm and figure out the error term. Which one is better and under which circumstances?

Problem 3. KKK

In class we saw that the average regret of the MWU algorithm after T time steps wasO
(√

lnm
T

)
. Show

that you can’t get better. That is, show for any algorithm (even randomized), the average regret has to be

Ω

(√
lnm
T

)
. To begin with, give an Ω(1/

√
T) bound for 2 experts.

Hint: The following fact may be useful: if X1, . . . , Xn are n independent, iid random variables taking
values in {−1,+1}with probability 1/2 each, and if S = |

∑n
i=1Xi|, then Exp[S] = Θ(

√
n).

Problem 4. KKK
In class when we wanted the average regret to be O(

√
lnm/T), we set η to be something which de-

pended on T . What is you didn’t know T ? That is, the online decision could stop at any unknown time
T and you would still like the average regret to be O(

√
lnm/T) (for all T). How would you modify the

algorithm?
Hint: Keep a conservative “guess” of T and set η likewise; if the actual T is more than your guess, then
bump η down.

Problem 5. KK
In class, we saw how to approximate solve the LP

min

n∑
j=1

cjxj : Ax ≥ b; 0 ≤ xj ≤ 1

The width parameter was defined to be ρ := maxmi=1 |a>i x− bi| for any x returned by the oracle. We showed
that for any ε > 0, the MWU algorithm can be used to return an x such that for every constraint i ∈ [m], we
get a>i x ≥ bi − ε. The number of iterations was O

(
ρ2 lnm
ε2

)
.

1

In this exercise suppose A, b ≥ 0, that is, all entries of the constraints are non-negative. Then, by
dividing the ith row by bi we can assume every bi = 1. Prove that the MWU algorithm actually needs to
only run O

(
ρ lnm
ε2

)
many iterations.

Hint: Recall the loss function we defined in class. Instead of just using |`i(t)2| ≤ 1, perhaps use that
|`i(t)2| ≤ |`i(t)|.

Problem 6. KK
For each of these functions f : Rn → R below, calculate∇f(x).

a. f(x) = b>Ax for some b ∈ Rm and some m× n matrix A.

b. f(x) = 1
2x
>Qx for some n× n matrix Q.

c. f(x) = ||Ax− b||22 where A is an m× n matrix, and b ∈ Rm.

Problem 7. KK
Prove the following about convex functions.

a. The function x 7→ lnx is concave (that is, − lnx is convex). Use the definition of convexity to deduce
the AM-GM inequality, that is, for any x1, . . . , xm > 0,(

m∏
i=1

xi

)1/m

≤
∑m
i=1 xi
m

b. Given a collection (at, bt) for t = 1, 2, . . . , T , where each at ∈ Rn and bt ∈ R, prove that

f(x) :=
T

max
t=1

(a>t x+ bt)

is convex. Use this to deduce that the following function, x 7→ x[`] where the RHS is the sum of the `
largest entries of x is a convex function.

c. Prove that if h : R → R is convex and increasing, and g : Rn → R is a convex function, then
f(x) := h(g(x)) is a convex function.

d. (Extra Credit)KKK
Prove that

f(x) := log

(
n∑
i=1

exi

)
is convex.
Hint: Use the Hessian

Problem 8. KK

a. Consider unconstrained convex optimization minx∈Rn f(x) where f : Rn → R is a convex, differen-
tiable function. Let x∗ be global minimizer of f . Prove that∇f(x∗) is the 0-vector. In particular, given
any x with∇f(x) 6= 0, demonstrate a vector y with f(y) < f(x).

b. Now consider constrained convex optimization minx∈S f(x) where S is a convex set. Agian, let x∗ ∈
S be a global minimizer. Is∇f(x∗) = 0 a necessary condition? What is a necessary condition you can
assert for∇f(x∗) and points in S. Prove your statement.

2

Problem 9. KKK
In class, we showed that for any ε > 0, if we set η = ε2/ρ and we run for T = D2ρ2/ε2 rounds, then we

can find a point xt with f(xt) ≤ f(x∗) + ε. Here D := ||x1 − x∗||2 and ||∇f(x)||2 ≤ ρ for all x.
In this exercise, you take a “time-dependent-parameter-independent” step size. That is, ηt is not a fixed

η but is defined to be ηt := 1√
t
. Formally, we start at point x1 and then at time t, we take the step

xt+1 = xt −
1√
t
∇f(xt)

Analyze the above algorithm. Your goal is to find out given ε how long do we need to run to get some
f(xt) ≤ f(x∗) + ε. The running time will depend on D, ρ; your goal is to find out if it is better or worse than
the fixed parameter-dependent step size.

Problem 10. KK
Given a differentiable function f : Rn → R, prove that ||∇f(x)||2 ≤ ρ for all x if and only if |f(x)−f(y)| ≤

ρ · ||x− y||2 for all x, y.

Problem 11. K
Consider f : Rn → R which is L-smooth and convex. In class, we proved that vanilla gradient descent

with η = 1/L if run for T := LD2/ε iterations, where D := ||x1 − x∗||2, one gets a point f(x) ≤ f(x∗) + ε.
In this exercise, you are supposed to extend it to the case of constrained convex optimization with

projected gradient descent. In particular, the algorithm is

zt+1 = xt − η∇f(xt); xt+1 = ΠS(zt+1) = arg min
v∈S
||zt+1 − v||2

Prove that the same convergence bound holds. Indeed, there is only one extra line in the whole analysis.
Hint: Recall the fact about projection: if u ∈ S, v /∈ S, and p := ΠS(v) is the projection of v onto S, then
(u− p)>(v − p) ≤ 0. That is, the line joining v and p, and the line joining u and p make an obtuse angle.

Problem 12. KKK
In this exercise, you will analyze gradient descent assuming only strong convexity of f . Recall that

f : Rn → R is `-strongly convex iff for all x, y we have

f(y) ≥ f(x) + (y − x)>∇f(x) +
`

2
· ||y − x||22

Assume that ||∇f(x)||2 ≤ ρ for all x (note that f may not be smooth).
Consider gradient descent with time-dependent step-size ηt := 1

`t . Prove that if we run this for T iterations,
and if err(t) := f(xt)− f(x∗), then

1

T
·
T∑
t=1

err(t) ≤ ρ2 lnT

`T

In particular, for any ε > 0 this shows that running for T = 2ρ2

` ·
(

1
ε ln 4ρ2

`ε

)
rounds would give error ≤ ε.

Hint: Use the fact that for strongly convex functions we have a better upper bound on err(t). In particular,

err(t) ≤ (xt − x∗)>∇f(xt)−
`

2
D2
t

Now use the fact that the η’s are decaying to show that when you sum up the err(t)’s cancellations occur to
give you what you need. It may be useful to recall the fact that 1 + 1/2 + 1/3 + 1/4 + 1/5 + ·+ 1/k ln k.

KKKK(Extra Credit): In fact, you can also get a O(1/ε)-convergence rate (assuming `, ρ are constant)
with some slight modification. If you have had fun solving the problem above, then maybe you can try this
too.

3

Problem 13. K(This was done in class – hence the single coffeecup. Please do not consult your handwritten
notes while writing this solution up.)

Let Φ : Rn → R be any strictly convex function, and S be any convex set S. Let z be an arbitrary point
outside S, and let x be an arbitrary point inside S. Define

p := arg min
v∈S

DΦ(v, z)

Prove DΦ(x, z) ≥ DΦ(x, p).

Problem 14. KK(This is an instructional and informational exercise – highly recommended!)
Recall the four steps of Mirror Descent from a given point xt:

a. yt := ∇Φ(xt)

b. yt+1 := yt − η∇f(xt)

c. zt+1 := ∇Φ−1(yt+1)

d. xt+1 := arg minp∈S DΦ(p, zt+1).

Prove that the the y, z’s can be “eliminated” to give the following “one-liner” connecting xt and xt+1.

xt+1 = arg min
p∈S

(
ηp>∇f(xt) +DΦ(p, xt)

)
Hint: There are no inequalities in the above exercise ... keep writing the definitions and eliminating first
zt+1, then yt+1 and then yt. Recall the slick trick when computing arg min – if we add a constant to the
function we are taking arg min of, the arg min doesn’t change.

Problem 15. KK(This may need some familiarity with linear algebra)
Consider the problem of minimizing f(x) over the ellipsoid x>Qx ≤ 1. Here Q is a positive definite

matrix, that is, Q is symmetric (Q> = Q), and all eigenvalues of Q are positive. In particular, this implies
Q−1 exists and its eigenvalues are precisely the reciprocals of Q.

Consider the mirror map Φ(x) := 1
2x
>Qx.

a. What is∇Φ(x)? Write your answer as succinctly as possible.

b. What is DΦ(y, x)? Write your answer as succinctly as possible.

c. Write down the four steps of mirror descent for this particular mirror map.

d. Given a point z /∈ S, that is, z>Qz > 1, what is arg minp∈S DΦ(p, z)? Prove that your answer is correct.

Problem 16. KK(This was alluded to, very briefly, in class)
Consider minimizing f(x) unconstrained as follows: at each step we sample i ∈ {1, 2, . . . , n} uniformly

at random and only modify the ith coordinate of xt to get xt+1.

a. What should this modification be such that Exp[xt+1 − xt | xt] = −η∇f(xt)?

b. What can you say about the number of steps required to get ε-close to the optimun f(x∗)? More
precisely, in how many steps, would you get a point x̃ s.t. f(x̃) ≤ f(x∗) + ε. Assume ||∇f(z)||2 ≤ ρ
for all z ∈ Rn.

4

Problem 17. KK
You are given a very large directed graph G = (V,E) (think the Web Graph) and you want to estimate

the number of edges in the graph. Assume you know the number of vertices. Furthermore, assume you
cansample a node uniformly at random, and also, assume you can query the out-degree of any node. Each
of these steps takes one unit of time. Describe a randomized algorithm which returns a (1± ε) multiplicative
approximation to the number of edges in G. You are allowed to fail with probability δ. What is the running
time? Under what conditions of the degree distribution is it better than the naive deterministic algorithm
that goes vertex-by-vertex and answers exactly? Under what conditions of the degree distribution is the
running time independent of the number of vertices?

Problem 18. KKK(This problem has 3 coffeecups only because it is long. But it is very instructive!)
In this exercise we investigate double hashing, that I alluded to in class, to store a dictionary D ⊆ U of

size s. Assume that any hash can be evaluated in O(1) time. Consider selecting a random hash function
h : U → [n] from a pairwise independent family H . For any i ∈ [n], let ni denote the number of entries of D
that map to i.

a. For a fixed h, how much time does it take to evaluate
∑n
i=1 n

2
i ?

b. Calculate an upper bound on Exp[
∑n
i=1 n

2
i]. Recall, the randomness is over the selection of h.

c. If we keep sampling h ∈ H till we get one such that
∑n
i=1 n

2
i ≤ 5s, in expectation how many times

do we need to keep sampling?

d. After you get such an h satisfying part (c)’s condition, consider choosing n different hash functions
hi : U → [n2

i] for each i ∈ [n]. (Of course, if ni = 0, you ignore that i). These hash functions need to
be perfect, that is, for any i, and for any x, y ∈ D,x 6= y, we must have hi(x) 6= hi(y). How much time,
in terms of s, does this require? (Recall perfect hashing was done in class)

Using all the machinery you have developed above, describe a hashing scheme which given input a
dictionary D of size s, takes O(s) processing time in expectation, but after that can answer any query of the
form “Is q ∈ S?” for a q ∈ U in deterministic O(1) time.

Problem 19. KKK[Bloom Filters]
In this exercise, we investigate Bloom Filters. These are extremely space efficient objects which return

only approximate answers to membership queries. More precisely, there can be false positives; the filter
(algorithm) can say a certain q ∈ D even though it is not. But there would be no false negatives, that is,
if x ∈ D, then the filter would definitely say x ∈ D. Bloom filters are used everywhere, so please do this
exercise!

The storage is a bit-array A[1 : n] where the size n = cs for some constant c we will fix later. The
pre-processing step involves independently sampling k different hash functions h1, . . . , hk : U → [n] from
a pairwise independent Hash family H . The parameter k will be fixed later too. Subsequently, we do the
following

For each element x ∈ D and for each i ∈ {1, . . . , k}, we set A[hi(x)] = 1.

At time of a query q ∈ U , we check if all of the bits A[hi(q)], i ∈ [k] are set to 1 or not. If so, we say, Yes,
q ∈ D, otherwise we say, No, q /∈ D.

a. What is the time (in terms of k) taken for each query?

b. Why are there no false negatives? That is, if x ∈ D, why would the query return Yes?

5

c. This is the heart of the problem: what is the chance of a false positive? That is, for any q /∈ D, what
is the probability (over the random choices of the k hash functions) that our algorithm returns Yes?
Your answer should be upper-bounded by a function of k and c alone.
Hint: Note that the algorithm will say q ∈ D if and only if for all i ∈ [k], we have A[hi(q)] = 1. Fix
such an i and let pi = hi(q). Now, A[hi(q)] = 1 occurs if and only if there is some j ∈ [k] (may be i,
mayn’t be i) and some x ∈ D such that hj(x) also evaluates to pi. What are the chances of that? Take
a deep breath and apply the union bound correctly.

d. For what choices of k and c can you make this error go below 1%

Problem 20. KK[Sim-Hash]
Suppose our universe U is the collection of unit vectors, that is, U := {v : ||v||2 = 1}. Consider the

angular distance function defined over this universe:

d(u, v) =
1− 〈u, v〉

2

In this exercise, you will prove a certain family of Hash functions is LSH for this angular distance metric.
The family is H := {hr : ||r||2 = 1} is an infinite family of functions where

hr(u) := sgn(〈r, u〉)

where sgnx = −1 if x < 0 and +1 if x ≥ 0. For what parameters P1, P2 is this family (R, cR, P1, P2)-LSH?

Problem 21. KK[Count-Min Sketch]
In class we looked at the following randomized estimator but then moved on to the Count-Sketch which

had better error properties. In this exercise, we formalize the easier algorithm.
Recall, the algorithm picks a hash function h : [m] → [k] uniformly at random from a universal hash

family. It maintains k counters. When a arrives in the stream, the algorithm increments C[h(a)]. At the end
of the stream, it estimates the frequency of any element a as f̂a := C[h(a)]. Let’s introduce another notation
: ||~f−a||1 :=

∑
b6=a fb.

a. What is Exp[f̂a]? Write your answer in terms of fa, ||~f−a||1, and k.

b. What k would you set, so that Pr[|f̂a − fa| > ε||~f−a||1] ≤ 1/2?

c. Imagine running t copies of the above experiment in parallel. That is, sample independently t hash
functions h1, . . . , ht uniformly at random from the UHF. Maintain an t × k matrix of counters, and
when you encounter a, increment the counters C[i][hi(a)] for all 1 ≤ i ≤ t. Finally, return f̂a :=
min1≤i≤t C[ht(a)].

For what value of t, do you have Pr[|f̂a − fa| > ε||~f−a||1] ≤ δ?

Finally, why would you run the above instead of the deterministic Misra-Gries? Consider a stream
where each entry of the stream is of the form (a,+) or (a,−) where the former adds a while the latter wipes
out a. Argue that the above algorithm works even for this streaming model with deletions. Misra-Gries has
no such analog...

6

Problem 22. KK
Prove the inequality we didn’t prove in class. Namely, for any m non-negative numbers f1, . . . , fm,

prove that (note for us
∑m
i=1 fi was equal to n)(

m∑
i=1

fi

)
·

(
m∑
i=1

f3
i

)
≤
√
m ·

((
m∑
i=1

f2
i

))2

Hint: There are many ways to do this, and some things might be useful to recall. One, is Cauchy-Schwarz
which states

∑m
i=1(aibi) ≤

√∑m
i=1 a

2
i

√∑m
i=1 b

2
i for any ai, bi’s. Two, since the function h(t) = tk is convex

for any k ≥ 1, we get
(

1
m

∑m
i=1 ai

)k ≤ 1
m

∑m
i=1 a

k
i . Lastly, for any θ ≥ 1 and any non-negative zi’s we

have
∑m
i=1 z

θ
i ≤ (

∑m
i=1 zi)

θ. This follows by noticing that if M := maxi zi, then
∑m
i=1 z

θ
i ≤

∑m
i=1M

θ−1zi ≤
Mθ−1 (

∑m
i=1 zi) ≤ (

∑m
i=1 zi)

θ, since M ≤
∑m
i=1 zi and since θ − 1 ≥ 1.

(Extra Credit): Generalize the above inequality by proving that for any k ≥ 1, we have(
m∑
i=1

fi

)
·

(
m∑
i=1

f2k−1
i

)
≤ m(1− 1

k) ·

((
m∑
i=1

fki

))2

Problem 23. KKKK
Imagine edges of a graph G streaming at you, but the same edge can appear many times. Give a small

space algorithm (your answer should take space o(n) (something like
√
n or log n) where n is the number of

vertices, to estimate the
∑
v∈V deg2(v) where deg(v) is the degree in the graph with multiple edges removed.

Problem 24. KK
This problem is to make sure you have understood things concretely. You are given a stream of n

elements. You are also input an integer k ≥ 1 and 0 ≤ ε < 1/2 before the stream starts; think of k = 5 and
ε = 0.01. Your job is to make one pass on the stream and return a set S ⊆ [m] (recall the entries of the stream
are from [m]) which satisfies the following two properties:

a. Every j ∈ [m] which appears more than > n/k times must be in S.

b. Every j ∈ S must appear ≥ n · (1
k − ε) times.

I just want the pseudocode for this problem, and no proof is needed (provide one if you feel like it). But you
have to clearly state all details (you can’t say “Oh, I will just use the LSH used in class”). You have to be
clear on your memory requirements (assume you know m and n for now). You are of course allowed to fail
with probability 2−100.

Finally, write a paragraph on what you will do if you had no idea what n and m were. How and where
would your pseudocode change?

Problem 25. KK[Dimension Reduction]
Suppose you have n vectors v1, . . . , vn and each of them lie in Rd. Suppose A is a k × d random matrix

such that eachA[i, j] independently is +1 with probability 1/2 and−1 with probability 1/2. Let wi = 1√
k
·Avi

be a k-dimensional random vector. We are interested in how the lengths of the wi’s correspond to the vi’s.

a. What is Exp[||wi||22]?

b. For a fixed i, and a given ε, δ, what is the probability Pr[
||wi||22
||vi||22

/∈ (1 ± ε)]? Your answer should be in
terms of k.

7

CS 49/149: 21st Century Algorithms (Fall 2018): Exercises

Below are some drill exercises which are not for submission but are meant for reinforcement of material
we did in class.

Exercise 1. Consider the online decision making problem done in class where gi(t) is the gain/profit obtained
if we play action i at time t. Design and analyze the MWU algorithm for maximizing total expected gain as
compared to the best fixed action in hindsight. This will mimic the analysis done in class; please try doing
this without looking at notes, etc.

Exercise 2. Show an example of a setting where the MWU algorithm actually does better (gets less loss or
more gain) than the fixed action in hindsight.

Exercise 3. Implement the approximate LP solver in your favorite language. Generate a “random” linear
program by taking entries of A, b, c at random. Does your implementation work “fast”? Do you see a
dependence on the width?

Exercise 4. Run the approximate LP solver done in class on the vertex cover LP :

min
∑
v∈V

c(v)xv : ∀(u, v) ∈ E, xu + xv ≥ 1, 0 ≤ xu ≤ 1

What is the oracle? What is the width? What is the final algorithm actually doing?

Exercise 5. We are given a population of m individuals where each person is either a man or a woman.
You want to estimate the number of women in the population, upto a multiplicative factor. More precisely,
suppose w was the number of women. You are given parameters ε, δ, and your goal is to return a number
W

Pr[W /∈ (1± ε)w] ≤ δ

That is, with probability ≥ (1− δ), the fraction W/w is in the range [1− ε, 1 + ε].
The only access you have is to sample an individual u.a.r from the population and know their gender.

How many samples will you need?

8

